If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+8x=-24
We move all terms to the left:
-2x^2+8x-(-24)=0
We add all the numbers together, and all the variables
-2x^2+8x+24=0
a = -2; b = 8; c = +24;
Δ = b2-4ac
Δ = 82-4·(-2)·24
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*-2}=\frac{-24}{-4} =+6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*-2}=\frac{8}{-4} =-2 $
| -7-8=6+x | | K-A(Z+4)=x | | 4.9t^2-6.647t-2.5=0 | | K-1-2k=-5 | | -16x^2-19x+332=0 | | 10=6+2k/4 | | -6(x+2)-15=18+3 | | -21=3/7n | | 14/5+1/9t=4 | | -17+x=-10 | | 25=x/10 | | 2(3x-1)-5x=9 | | (2j/4)+5=8 | | 6+n5=-4 | | 8x+7x-66=88-7x | | .25x+17=x-4 | | (g+3)/5=1/2 | | 2^x+3=4^2x-3 | | 3i+3=21 | | (3x+2)+(x+1)=(2x+4)+(x+3 | | 50-2x²=0 | | 3x+7=49.3 | | 2x+3=1x-5 | | 4ee=3 | | -38-7a=-6(a+7)+3 | | x-1=286 | | 2w+6=2+4-2w | | 5h/2=25 | | -2n-13=n+5 | | -2x+3(4x+12)=146 | | 3x/5-2x=7 | | 7x-32=10x+34 |